The interplay between weak topologies on topological semilattices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak Relative Pseudocomplementation on Semilattices

1. Introduction. A meet semilattice is said to be weakly relatively pseudocomplemented, or just wr-pseudocomplemented, if, for every element x and every y ≤ x, all the maxima

متن کامل

On the Interplay between Measurable and Topological Dynamics

Part 1. Analogies 3 1. Poincaré recurrence vs. Birkhoff’s recurrence 3 1.1. Poincaré recurrence theorem and topological recurrence 3 1.2. The existence of Borel cross-sections 4 1.3. Recurrence sequences and Poincaré sequences 5 2. The equivalence of weak mixing and continuous spectrum 7 3. Disjointness: measure vs. topological 10 4. Mild mixing: measure vs. topological 12 5. Distal systems: to...

متن کامل

Weak Relative Pseudocomplements in Semilattices

Weak relative pseudocomplementation on a meet semilattice S is a partial operation ∗ which associates with every pair (x, y) of elements, where x ≥ y, an element z (the weak pseudocomplement of x relative to y) which is the greatest among elements u such that y = u ∧ x. The element z coincides with the pseudocomplement of x in the upper section [y) and, if S is modular, with the pseudocomplemen...

متن کامل

Weak Topologies on the Bounded Holomorphic Functions

Let G be a region in the complex plane such that there is a nonconstant bounded holomorphic function on G, and denote the algebra of all such functions by BH{G). Let H^{G) denote the Banach algebra that arises when BH{G) is endowed with the supremum norm. In the case where G is the unit disc D, H*>(G) has been extensively studied, mostly by a real-variables analysis of the radial boundary value...

متن کامل

Jānis C̄ırulis WEAK RELATIVE PSEUDOCOMPLEMENTS IN SEMILATTICES

Weak relative pseudocomplementation on a meet semilattice S is a partial operation ∗ which associates with every pair (x, y) of elements, where x ≥ y, an element z (the weak pseudocomplement of x relative to y) which is the greatest among elements u such that y = u ∧ x. The element z coincides with the pseudocomplement of x in the upper section [y) and, if S is modular, with the pseudocomplemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2019

ISSN: 0166-8641

DOI: 10.1016/j.topol.2019.02.028